
Pi
ct

ur
e

cr
ed

it:
 G

et
ty

www.intersec.co.uk34 www.intersec.co.ukJanuary 2018 35January 2018

feature

APPLICATIONS – OUR
DIGITAL SERVANTS
Dr Simon Wiseman examines potential security flaws behind apps
that have designed to make our lives easier

We use applications all the time, whether
on the desktop, mobile or via the web.
They handle our sensitive data and

let us control critical operations, at home and
at work. Applications are supposed to be our
servants, doing what we want in a digital world.

In reality applications do what their authors tell them
to do. This usually aligns with our wishes as users – but
not always, for example in-app advertising often annoys.
Other features prove much more dangerous, and the
software author is often unaware that they have provided
the feature. Of particular concern are application
features that give attackers control of your environment
through the content that they provide.

A simple example from the early days of the web,
is the feature of web browser script functionality that
allows scripts to create files. Modern browsers no longer
allow scripts to do this because it was found to be unsafe,
but attackers could create a web page with a script that
creates an executable file. This could then be placed in
a location where the operating system automatically
runs it when the user logs in. So just by visiting the
attacker’s website, a user gets to run the attacker’s own
application, which can then do anything that the user can
do as well as probably doing quite a few things that the
user wouldn’t want to do.

There is now much greater awareness of this kind
of issue in the developer community, and it is unlikely

such dangerous features will be introduced into new
applications without someone calling into question the
wisdom of doing so. But that’s only true of features that
are known. What happens if the feature is so obscure
that nobody considers it? What happens if the feature is
undocumented so nobody knows it is even there?

A recent case of an obscure feature catching out the
security community involves the ability to embed LNK
files in Microsoft Office documents. A LNK file is what
you get if you create a shortcut to an application or
document on your Microsoft Windows desktop. The
file contains the name of the application to run and any
parameters to give it. LNK files are harmless as they
just help you find stuff and embedding files in Office
documents is an important feature that lets you, for
example, embed Excel spreadsheets in Word documents.
But the two features can be used together – an LNK file
can be embedded into a Word document. This is quite
obscure and has no real purpose. It is just an unintended
consequence of how embedding works.

The issue is that LNK files can invoke applications
such as Powershell – a general-purpose scripting engine
used in Windows to automate all sorts of system activity.
This means that an attacker can get a user to run a
malware script by putting it into an LNK file that is then
embedded in a Word document.

FIXES TO THE PROBLEM
Once attackers started exploiting this kind of attack,
fixes were applied to block them. In particular, it is no
longer possible to run Powershell in this way – providing
that you have the latest operating system installed and
that it is fully patched.

But it is still possible to embed LNK files in Office
documents and have them run other applications. This
is considered safe, because nobody (willing to disclose a
vulnerability) has yet thought of a way of exploiting it.

This highlights the fact that obscure features of
applications are dangerous. It may be their capability isn’t
fully understood or that combinations of well-known
features work in strange ways. So we can’t really trust
the applications we run to only work as we intend.

Another recent case involved an old feature of Word
that is no longer documented. Word documents can
contain field codes, which display some value that is
automatically updated based on other data, such as the
number of a particular page.

One field code (DDEAUTO) allows data to be
extracted from external sources, like a database and
displayed in the Word document. This uses the Dynamic
Data Exchange feature of Windows – the mechanism
that allows applications to share information, such as
when using a mail merge.

The DDEAUTO field code allows the application that
is the source of the data to be specified, along with any
parameters needed. The intended usage is to start up a
database application, but it can run a scripting engine
such as Powershell, as with the LNK feature already
discussed. This means that an attacker can get Word to
run their code on your behalf when you open a specially
crafted document.

The DDEAUTO field code is left over from early
versions of Word. It is no longer described in the
documentation, and doesn’t appear in the user interface
for creating fields. But it still works. Since being
exploited in an attack, it is now well known, but before

then it was an undocumented feature, so anyone
checking for malware in documents would most likely
have overlooked it.

POTENTIAL HIDDEN ISSUES
The question is, are there other features in Word
that are completely undocumented? Perhaps there is
another field code that was implemented but never
properly released, and nobody knows it is there. There
are so many possibilities that testing will never find
such a hidden feature. Because access to the source
code would be needed, along with a lot of time to
analyse it. If we can’t be sure of precisely what features
our applications have, how can we be sure that none of
them are dangerous?

Take for example a CSV file. This is a text file that
represents a table of data. Each line contains the
data of one row. The fields in a row are separated by
commas. Normally, CSV files contain numeric data
and text strings, but Excel also allows them to contain
formulae – any field starting with an equals sign is
treated as a formula. This comes as a surprise to most
people that use CSV files, as the format is thought of as
a simple way of exchanging basic data.

On top of this, each row of a CSV file can have a
different number of fields – including none (a blank
line) or just one (no commas) – and text fields can
contain non-printing characters. What this means is
that any file can be treated as a CSV file. For example,
take any PNG image file, change its name to have a
CSV file extension and then open it with Excel. The
spreadsheet that appears will not be useful, but it

works. All this is pretty bizarre, but how could it be
potentially exploited?

Formulas give spreadsheets their power. Most
people use them for calculations on data within the
spreadsheet, but several formula functions allow data
to be pulled from other sources. In particular, an Excel
formula can get data from an external web server
or from another application using DDE. This gives
attackers ways of getting Excel to run their code and
so is obviously dangerous, but attackers can use CSV
files to hide what they are doing. A PNG image file
can be treated as a CSV file. A CSV file can contain
formulas. A formula can cause attacker’s code to run.
This means a PNG image, carefully constructed and
opened in the right context, can be dangerous.

Can we be sure our applications don’t have features
that allow this to happen? No, because we don’t
understand what functionality they have and even if
we did, the interactions between features would be so
complex we could not understand the implications.

Most anti-malware solutions look for known
attacks, either by checking for characteristic patterns
in the data or checking for characteristic behaviour by
opening the data in a sandbox. Both approaches fail to
stop new attacks and attacks that have been crafted to
evade detection.

CTR defends against
malware without
attempting to detect it

CONTENT THREAT
REMOVAL ASSUMES ALL
DATA IS UNSAFE AND
ALLOWS NONE TO PASS

Pi
ct

ur
e

cr
ed

its
: I

ly
a

Pa
vl

ov
 a

nd
 Ty

le
r E

as
to

n

www.intersec.co.uk36 January 2018

Deep Content Inspection (DCI) is an alternative,
long used by government, which has re-appeared in the
commercial space as Content Disarm and Reconstruct
(CDR). With DCI/CDR, data is analysed in detail,
looking for executable data and malformed or unusual
structures that might lead to code execution. Any code
is considered harmful and is not allowed to pass. This
is in contrast to malware detection, where only code
known to be harmful is blocked, making it less strong.

CONTENT THREAT REMOVAL
However, DCI/CDR only works if the applications that
handle the data are fully understood. Unfortunately,
the obscure, undocumented and bizarre features
being exploited by attackers mean this isn’t the case.
In practice, the technique only works against known
attack techniques, much like the malware detection
strategy. This limitation was recognised some time
ago, and government systems started to move away
from DCI to a different technique based around
transformation. This is now being delivered into
commercial systems as Content Threat Removal (CTR)
by companies such as Deep Secure.

CTR defends against malware without attempting
to detect it. Rather than try to determine if data can

be safely allowed into a system, CTR assumes all data
is unsafe and allows none to pass. It extracts the useful
business information that the data is carrying, then
builds completely new safe data to hold it. This way
no unsafe data ever gets into the system, but required
business information does.

With CTR there is no need to understand all the
ways that data can be unsafe. All that is required is to
know one safe way of representing some information.
With malware detection, if the developers overlook

feature

Dr Simon Wiseman
is CTO Deep Secure
with over 30 years of
experience in the field of
Government computer
security. He is responsible
for the technical strategy
at Deep Secure, devising
unique solutions to hard
cyber security problems.
He has pioneered work
on the use of data
transformation to defeat
attacks in digital content.

some vulnerability the defences fail. With CTR the
data is always discarded, so if there’s an unknown
vulnerability the defence still works. The CTR
developers do need to know a safe way of representing
information, which means it is possible to test a single
feature to make sure it works as expected. Testing cannot
find unsafe features, but it can check a feature is safe.

Using CTR, the obscure embedded LNK files serve
no useful business purpose and so are removed by the
transformation. The undocumented DDE field codes are
discarded because they are undocumented. The bizarre
behaviour of a CSV file is made safe by removing all
formulae, or those formula functions that are unknown.
So, when these issues were publicised users of malware
detection and DCI/CDR defences needed an update, but
CTR users remained safe l

WE CAN’T REALLY TRUST
THE APPLICATIONS THAT
WE RUN TO ONLY WORK
AS WE INTEND THEM TO

Obscure features are
a worry, but there are
cases of well-known
features that have
bizarre behaviour. One
that recently came to
light relates to the way
Excel handles (CSV) files

Here the browser had a
handy feature, in that
scripts that create files
are useful as web
applications can
integrate closely with
your desktop. But it
also had unintended
consequences as it
allowed malware
to be delivered to
the desktop

